MapReduce原理浅析

    用 Mapeduce 来处理大数据集的过程, 这个 MapReduce 的计算过程简而言之,就是将大数据集分解为成百上千的小数据集,每个(或若干个)数据集分别由集群中的一个结点(一般就是一台普通的计算机)进行处理并生成中间结果,然后这些中间结果又由大量的结点进行合并, 形成最终结果。

   计算模型的核心是 Map 和 Reduce 两个函数,这两个函数由用户负责实现,功能是按一定的映射规则将输入的 <key, value> 对转换成另一个或一批 <key, value> 对输出。


                                表 Map 和 Reduce 函数

函数 输入 输出 说明
Map <k1, v1> List(<k2,v2>) 1. 将小数据集进一步解析成一批 <key,value> 对,输入 Map 函数中进行处理。 
2. 每一个输入的 <k1,v1> 会输出一批 <k2,v2>。 <k2,v2> 是计算的中间结果。
Reduce <k2,List(v2)> <k3,v3> 输入的中间结果 <k2,List(v2)> 中的 List(v2) 表示是一批属于同一个 k2 的 value

  基于 MapReduce 计算模型编写分布式并行程序非常简单,程序员的主要编码工作就是实现 Map 和 Reduce 函数,其它的并行编程中的种种复杂问题,如分布式存储,工作调度,负载平衡,容错处理,网络通信等,均由 MapReduce 框架(比如 Hadoop )负责处理,程序员完全不用操心。

本地计算

  数据存储在哪一台计算机上,就由这台计算机进行这部分数据的计算,这样可以减少数据在网络上的传输,降低对网络带宽的需求。在 Hadoop 这样的基于集群的分布式并行系统中,计算结点可以很方便地扩充,而因它所能够提供的计算能力近乎是无限的,但是由是数据需要在不同的计算机之间流动,故网络带宽变成了瓶颈,是非常宝贵的,“本地计算”是最有效的一种节约网络带宽的手段,业界把这形容为“移动计算比移动数据更经济”。

任务粒度

   把原始大数据集切割成小数据集时,通常让小数据集小于或等于 HDFS 中一个 Block 的大小(缺省是 64M),这样能够保证一个小数据集位于一台计算机上,便于本地计算。有 M 个小数据集待处理,就启动 M 个 Map 任务,注意这 M 个 Map 任务分布于 N 台计算机上并行运行,Reduce 任务的数量 R 则可由用户指定。

Partition

  把 Map 任务输出的中间结果按 key 的范围划分成 R 份( R 是预先定义的 Reduce 任务的个数),划分时通常使用 hash 函数,如: hash(key) mod R,这样可以保证某一段范围内的 key,一定是由一个 Reduce 任务来处理,可以简化 Reduce 的过程。

Combine

  在 partition 之前,还可以对中间结果先做 combine,即将中间结果中有相同 key的 <key, value> 对合并成一对。combine 的过程与 Reduce 的过程类似,很多情况下就可以直接使用 Reduce 函数,但 combine 是作为 Map 任务的一部分,在执行完 Map 函数后紧接着执行的。Combine 能够减少中间结果中 <key, value> 对的数目,从而减少网络流量。

Reduce 任务从 Map 任务结点取中间结果

   Map 任务的中间结果在做完 Combine 和 Partition 之后,以文件形式存于本地磁盘。中间结果文件的位置会通知主控 JobTracker, JobTracker 再通知 Reduce 任务到哪一个 DataNode 上去取中间结果。注意所有的 Map 任务产生中间结果均按其 Key 用同一个 Hash 函数划分成了 R 份,R 个 Reduce 任务各自负责一段 Key 区间。每个 Reduce 需要向许多个 Map 任务结点取得落在其负责的 Key 区间内的中间结果,然后执行 Reduce 函数,形成一个最终的结果文件。

任务管道

   有 R 个 Reduce 任务,就会有 R 个最终结果,很多情况下这 R 个最终结果并不需要合并成一个最终结果。因为这 R 个最终结果又可以做为另一个计算任务的输入,开始另一个并行计算任务。

 

MapReduce is a framework for processing highly distributable problems across huge datasets using a large number of computers (nodes), collectively referred to as a cluster (if all nodes use the same hardware) or a grid (if the nodes use different hardware). Computational processing can occur on data stored either in a filesystem (unstructured) or in a database (structured).

“Map” step: The master node takes the input, partitions it up into smaller sub-problems, and distributes them to worker nodes. A worker node may do this again in turn, leading to a multi-level tree structure. The worker node processes the smaller problem, and passes the answer back to its master node.

“Reduce” step: The master node then collects the answers to all the sub-problems and combines them in some way to form the output – the answer to the problem it was originally trying to solve.

MapReduce allows for distributed processing of the map and reduction operations. Provided each mapping operation is independent of the others, all maps can be performed in parallel – though in practice it is limited by the number of independent data sources and/or the number of CPUs near each source. Similarly, a set of ‘reducers’ can perform the reduction phase – provided all outputs of the map operation that share the same key are presented to the same reducer at the same time. While this process can often appear inefficient compared to algorithms that are more sequential, MapReduce can be applied to significantly larger datasets than “commodity” servers can handle – a large server farm can use MapReduce to sort a petabyte of data in only a few hours. The parallelism also offers some possibility of recovering from partial failure of servers or storage during the operation: if one mapper or reducer fails, the work can be rescheduled – assuming the input data is still available.

Dataflow

The frozen part of the MapReduce framework is a large distributed sort. The hot spots, which the application defines, are:

  • an input reader
  • a Map function
  • a partition function
  • a compare function
  • a Reduce function
  • an output writer

[edit] Input reader

The input reader divides the input into appropriate size ‘splits’ (in practice typically 16 MB to 128 MB) and the framework assigns one split to each Map function. The input reader reads data from stable storage (typically a distributed file system) and generates key/value pairs.

A common example will read a directory full of text files and return each line as a record.

[edit] Map function

Each Map function takes a series of key/value pairs, processes each, and generates zero or more output key/value pairs. The input and output types of the map can be (and often are) different from each other.

If the application is doing a word count, the map function would break the line into words and output a key/value pair for each word. Each output pair would contain the word as the key and “1” as the value.

[edit] Partition function

Each Map function output is allocated to a particular reducer by the application’s partition function for sharding purposes. The partition function is given the key and the number of reducers and returns the index of the desired reduce.

A typical default is to hash the key and modulo the number of reducers. It is important to pick a partition function that gives an approximately uniform distribution of data per shard for load balancing purposes, otherwise the MapReduce operation can be held up waiting for slow reducers to finish.

Between the map and reduce stages, the data is shuffled (parallel-sorted / exchanged between nodes) in order to move the data from the map node that produced it to the shard in which it will be reduced. The shuffle can sometimes take longer than the computation time depending on network bandwidth, CPU speeds, data produced and time taken by map and reduce computations.

[edit] Comparison function

The input for each Reduce is pulled from the machine where the Map ran and sorted using the application’s comparison function.

[edit] Reduce function

The framework calls the application’s Reduce function once for each unique key in the sorted order. The Reduce can iterate through the values that are associated with that key and output 0 or more values.

In the word count example, the Reduce function takes the input values, sums them and generates a single output of the word and the final sum.

[edit] Output writer

The Output Writer writes the output of the Reduce to stable storage, usually a distributed file system.

源地址:http://blog.renren.com/GetEntry.do?id=743060929&owner=253392392

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注

此站点使用Akismet来减少垃圾评论。了解我们如何处理您的评论数据